實驗六 光 柵

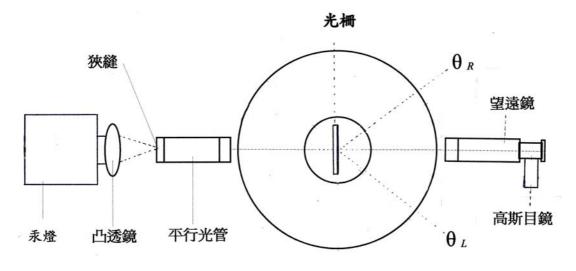
一·實驗內容:

- 1 · 利用光柵(25000條/英吋)正向入射第1階繞射、觀測汞燈光譜。
- $2 \cdot 利用光柵(3000條/公分) 非正向入射第9階繞射、測量鈉燈雙線光譜間距<math>\Delta \lambda$ 。

二•實驗器材:

分光計。

2. 鈉燈(含凸透鏡組)。


3·汞燈(含凸透鏡組)。

4·25000條/英吋(複製光柵)。

5.3000條/公分(複製光柵)。

6. 放大鏡。

三·實驗步驟:

測量汞熔光譜裝置圖

1.觀測汞燈光譜:

- (1) 參考反射光的偏極(實驗十)中的說明,先熟練分光計的調整步驟。(大略調整就可以)
- (2)25000條/英吋光柵(夾在架上),置於平檯中央,將有光柵薄膜的一面對向望遠鏡,用目測法、 使光柵面與平行光管軸線相垂直後**固定大盤**。
- (3) 調整汞燈位置,使成像於平行光管的狹縫上,通過平行光管的燈光,均勻的照射在光柵中央。
- (4)由望遠鏡看光譜,適當的調整狹縫寬度,使黃色雙線光譜清楚的分開。比對左右兩側譜線的高度、若不相同、旋轉與光柵面平行的水平調整鈕、即可修正。(小心不要完全鬆開)
- (5)對照分光計實驗圖二(汞燈光譜分布圖)、仔細尋找以確定看到第一階、波長為 6908A 的紅色譜線。
- (6)測量 m = 1 階中各譜線的左右繞射角 θ_{R} 及 θ_{L} ,並將數據填於表一中: 各譜線的平均繞射角 θ = $|\theta_{R}-\theta_{L}|/2$ 計算其值後亦填於表一中。
 - (7) A = $|\theta_R \theta_0|$ = _____ , B = $|\theta_L \theta_0|$ = ____ \circ

(註: $\theta_0 =$ 平行光管入射方向、當 |A-B| > 1° 時、代表光柵面與平行光管入射方向不垂直、使光譜左右繞射角差異太大、可利用大盤微調鈕轉動光柵面來修正。)

(8) 利用光柵垂直入射繞射公式 $\mathbf{d} \cdot \sin \theta = \mathbf{m} \lambda$,計算對應之譜線波長,將結果填於表一中,經由回歸計算後、再計算其百分誤差 " $\Delta\%$ "。(測一條算一條、有間題立刻解決)

表 一:

	波長標準值	$\theta_{\scriptscriptstyle \! R}$	$\theta_{\scriptscriptstyle L}$	θ	λ(Å)	誤差
m	(Å)	***° **´	***° **´	**. ***°	測量值	δ_i	回歸後數值	%
	6907. 5							
	6234. 4							
	5790. 7							
	5769. 6							
1	5460.7							
	4916.1							
	4358. 3							
	4077.8							
	4046.6							

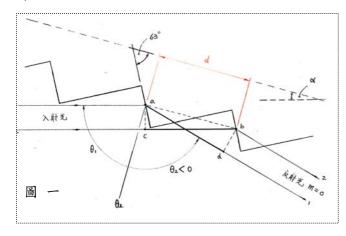
(9) 因入射光的垂直誤差、角度盤的機械誤差、以及溫度、濕度對光柵線間距離的影響、

"波長測量值"會因上述的固有誤差、造成全面的偏大或偏小、所以要作"回歸修正"計算 才能大幅降低實驗結果的"絕對誤差"。

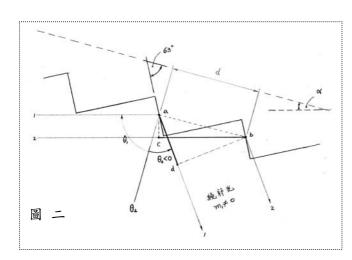
波長測量值誤差 δ_{i} = (波長測量值-波長標準值)/ 波長標準值 (註: 保留正負號)

波長測量值誤差的平均值
$$\langle \delta \rangle = \frac{1}{9} \sum_{i=1}^{9} \delta_i =$$

波長回歸後數值(**波長絕對值**) = 波長測量值 / $(1 + < \delta >)$

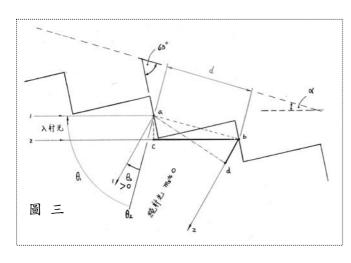

波長的絕對誤差 = 〔(波長回歸後數值-波長標準值)/ 波長標準值 〕 X 100%

利用反射式閃耀光柵(echelle grating)測量鈉光燈紅黃綠靛四種顏色的雙線光譜

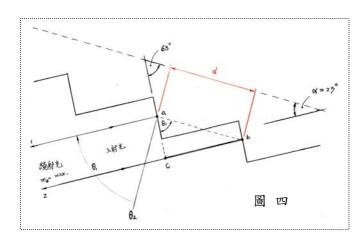

規格: 閃耀角: 63 度,刻痕密度: 316 條/mm,長: 25.4mm,寬: 12.5mm。

(注意:光柵絕對不可擦拭、觸摸、吹氣)

原理:



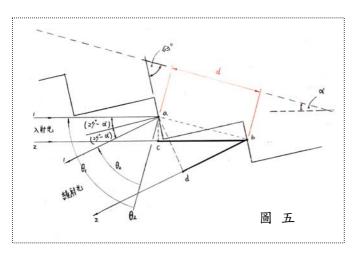
1. 如圖一所示, θ_{\perp} 是光栅平面的法線方向,d 為刻痕間距, θ_{1} 為入射角 θ_{2} 為繞射角,兩者均由 θ_{\perp} 量起,順時針為正、逆時針為負,當 $\theta_{1}=-\theta_{2}$ 時(滿足反射條件),因 $ad=cb=d\cdot\sin\theta_{1}$ 則光束1與光束2間光程差為零,即射出光沒有繞射現象 (m=0)。



2. 如圖二所示,光東1與光東2間光程差 $\Delta = \overline{cb} - \overline{ad}$ $\overline{cb} = d \cdot \sin \theta_1 , \overline{ad} = d \cdot \sin \theta_2)$

因大部份繞射光被反射點平面遮檔,繞射效率較差(即 譜線較弱)。

- 3. 如圖三所示,入射角 θ_1 、繞射角 θ_2 在光栅平面法線的 — — 同側,光程差 $\Delta=cb+ad$,因繞射光沒有被反射點平面 遮檔,繞射效率較高譜線較亮(一般多用於此狀況)。
- 4. 但此時因繞射的窗口寬度較大,單狹縫繞射的第一階暗紋位置小於 90 度,可能會吃掉某一階繞射光譜,增加譜線 判讀上的困難 (即 m=? 會數錯)。


5. 如圖四所示,當入射光與繞射光剛好在閃耀角上

$$(\mathbb{R}^p \theta_1 = \theta_2 = 63^\circ)$$

光程差
$$\Delta = 2 \cdot cb = 2 d \cdot \sin \theta_1$$

在這種狀況下,因繞射光滿足反射條件且入射光的窗口最大,使得第 m 階($m = \Delta/\lambda$)的干涉亮線,剛巧落在單狹縫繞射的零階亮帶中央,故譜線最亮,這就是為何稱此光柵之閃耀角為 63 度的原因。

6. 將閃耀光柵安裝在分光計上,因平行光管與望遠鏡無法重疊(二者間最小夾角大約30度),故無法使用如圖四所 示的最佳狀態,只能依圖五所示的光路徑來使用,使光柵的表現儘可能的接近理想。

7. 如圖五所示,因平行光管與望遠鏡間夾角要 $>30^{\circ}$ 則 $(27^{\circ}-\alpha)>15^{\circ}$ 知 $\alpha<12^{\circ}$

入射角
$$\theta_1 = 90^\circ - \alpha$$

繞射角
$$\theta_2$$
 = 36° + α

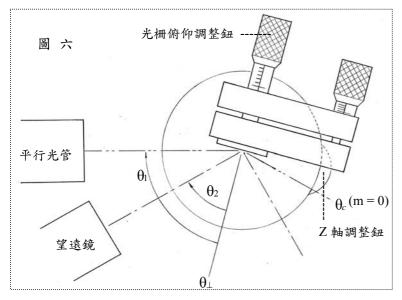
(繞射光滿足反射條件時—譜線最亮)

8.
$$m \lambda = d \cdot (\sin \theta_1 + \sin \theta_2)$$
 -----(1)

由公式 (1) 得
$$d\lambda = \frac{d}{m} \left(\cos \theta_1 \cdot d\theta_1 + \cos \theta_2 \cdot d\theta_2\right)$$
 -----(2)

例一:
$$\alpha$$
 = 10° , θ_1 = 80° , θ_2 = 44° , $d\theta_1$ = θ_2 , $d\theta_2$ = 2.909×10^{-4} 整 (即 1 角分), m = 9

$$d\lambda = 0.74 \,\text{Å} / 1 \,\text{角分}$$
 (設 $\lambda = 589.3 \,\text{nm}$)


例二:
$$\alpha = 47^{\circ}$$
 , $\theta_1 = 43^{\circ}$, $\theta_2 = 83.5^{\circ}$, $d\theta_1 = 0$, $d\theta_2 = 2.909 \times 10^{-4}$ 徑 (即1角分), $m = 9$

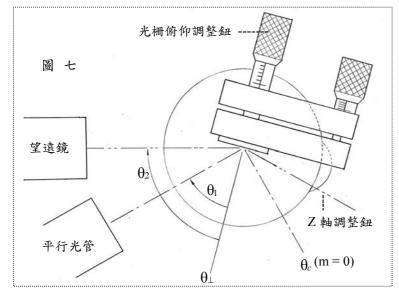
$$d\lambda = 0.116\,\text{A}$$
 / 1 角分 (當 $\lambda = 589.3\,\text{nm}$ 時、測量值精確度上升 6.3 倍)

(由上面的兩個例子,可知在測 Na 雙線間距時,要儘可能用較大的繞射角,以得到較精確的測量數据。)

$$(\mathfrak{P} \theta_2 > \theta_1)$$

實驗步驟:

法一: 測黃光(入射角 > 繞射角)


- 3. 望遠鏡移到 $\theta_a=\theta_b+90^\circ+\alpha=$ 固定望遠鏡(取 $\alpha=10^\circ$ 入射角大約 80°)。
- echelle 反射光栅架,
 調整到正確高度後固定,大盤鬆鎖
 轉動光柵面對準望遠鏡,利用高斯目鏡及
 光栅俯仰調整鈕使光柵面精確垂直望遠鏡,

固定大盤 記錄 θ_{\perp} = _____。

- 5. 参攷圖六、望遠鏡移到 m=0 位置,記錄 $\;\theta_{c}$ = _____。 得入射角 $\;\theta_{l}$ = $\;\theta_{\perp}$ $\;\theta_{c}$ = _____。
- 6. 由 m=0 開始向左數譜線,取得最高階 m = ____ (小心判別,有時某一階落在繞射零點附近因而變暗甚或消失)
- 7. 用 Z 軸鈕調整譜線高度、記錄外側譜線 θ_{d1} = _____。 記錄內側譜線 θ_{d2} = _____。

得繞射角 $\theta_{21} = \theta_{d1}$ - θ_{\perp} = _____ 。 $\theta_{22} = \theta_{d2}$ - θ_{\perp} = ____ 。 $\Delta \theta = \theta_{21}$ - θ_{22} = ____

8. $\lambda_1 = \underline{\qquad} \circ \lambda_2 = \underline{\qquad} \circ \Delta \lambda = \lambda_1 - \lambda_2 = \underline{\qquad} \circ$

法二: 測黃光(入射角 < 繞射角)

 轉光柵面與平行光管大致平行,固定大盤移 望遠鏡對準平行光管入射方向,記錄

 $\theta_b =$ \circ

- 2. 望遠鏡移到 $\theta_a = \theta_b + 90^\circ + \alpha =$ ________ 固定望遠鏡 (取 $\alpha = 47^\circ$ 入射角大約 43°)。
- 轉動光柵並利用高斯目鏡使光柵面精確垂直
 望遠鏡,固定大盤 記錄 β = _____

4. 參攷圖七望遠鏡移到 $\mathbf{m}=0$ 位置,記錄 θ_c = _____。 得 θ_1 = θ_\perp - θ_c = _____。

	(此步驟無法直接點數 m = ?)
	得繞射角 $\theta_{21} = \theta_{d1} - \theta_{\perp} = $ 。 $\theta_{22} = \theta_{d2} - \theta_{\perp} = $ 。 $\Delta \theta = \theta_{21} - \theta_{22} = $
5.	將望遠鏡逆時針轉到平行光管左側,記錄外側譜線 θ_{d1} =。 記錄內側譜線 θ_{d2} =

6. 由 m=9 計算出
$$\lambda_1$$
 = _____ 。 λ_2 = ____ 。 Δ λ = λ_1 - λ_2 = ____ 。

7. 其他三色同理可得。

紅	615.423nm	616.075nm	$\Delta \lambda = 0.625$ nm
黄	589.592nm	588. 995nm	$\Delta \lambda = 0.597$ nm
綠	568.820nm	568. 263nm	$\Delta \lambda = 0.557$ nm
靛	498.281nm	497.854nm	$\Delta \lambda = 0.427$ nm